Multiple Regression Using R

A PHP Error was encountered

Severity: Warning

Message: strtotime(): It is not safe to rely on the system's timezone settings. You are *required* to use the date.timezone setting or the date_default_timezone_set() function. In case you used any of those methods and you are still getting this warning, you most likely misspelled the timezone identifier. We selected the timezone 'UTC' for now, but please set date.timezone to select your timezone.

Filename: blog/post_details.php

Line Number: 38

Backtrace:

File: /home/solutio1/public_html/application/views/blog/post_details.php
Line: 38
Function: strtotime

File: /home/solutio1/public_html/application/controllers/Blog.php
Line: 14
Function: view

File: /home/solutio1/public_html/index.php
Line: 315
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: date(): It is not safe to rely on the system's timezone settings. You are *required* to use the date.timezone setting or the date_default_timezone_set() function. In case you used any of those methods and you are still getting this warning, you most likely misspelled the timezone identifier. We selected the timezone 'UTC' for now, but please set date.timezone to select your timezone.

Filename: blog/post_details.php

Line Number: 38

Backtrace:

File: /home/solutio1/public_html/application/views/blog/post_details.php
Line: 38
Function: date

File: /home/solutio1/public_html/application/controllers/Blog.php
Line: 14
Function: view

File: /home/solutio1/public_html/index.php
Line: 315
Function: require_once

2019-09-15
Manoj Pawar

Multiple regression is extended version of linear regression.we have more than one predictor and one response variable. 

Step to follow:

Step 1:multiple regression follows given equation,

    Z <- a+b1x1+b1x2+…+bnxn

Where,

Z :is the Response Variable.

A,b1,b2..bn:are Coefficient.

X1,x2,…xn:are Pridictor Variable.

Step 2:lm() function

lm() function find out the relation between two variable (i.e linear regression)  or more than two variable (i.e multiple regression).

lm(Y~x1+x2+x3..,data)

Example: we are using dataset avilable in R environment (i.e:mtcars).how dataset can access is given below:

 > data("mtcars")

 > print.data.frame(mtcars)               

shows mtcars dataset,

                      mpg   cyl  disp  hp  drat   wt  qsec  vs am gear carb
 Mazda RX4            21.0   6   160.0 110 3.90 2.620 16.46  0  1    4    4
 Mazda RX4 Wag        21.0   6   160.0 110 3.90 2.875 17.02  0  1    4    4
 Datsun 710           22.8   4   108.0  93 3.85 2.320 18.61  1  1    4    1
 Hornet 4 Drive       21.4   6   258.0 110 3.08 3.215 19.44  1  0    3    1
 Hornet Sportabout    18.7   8   360.0 175 3.15 3.440 17.02  0  0    3    2
 Valiant              18.1   6   225.0 105 2.76 3.460 20.22  1  0    3    1
 Duster 360           14.3   8   360.0 245 3.21 3.570 15.84  0  0    3    4
 Merc 240D            24.4   4   146.7  62 3.69 3.190 20.00  1  0    4    2

when we want to display only 6 columns in the dataset, then

 w <- head(mtcars,6)
 
 print(w)

 it will display 6 columns from mtcars,

                      mpg   cyl  disp  hp  drat   wt    
 Mazda RX4            21.0   6   160.0 110 3.90 2.620   
 Mazda RX4 Wag        21.0   6   160.0 110 3.90 2.875   
 Datsun 710           22.8   4   108.0  93 3.85 2.320   
 Hornet 4 Drive       21.4   6   258.0 110 3.08 3.215   
 Hornet Sportabout    18.7   8   360.0 175 3.15 3.440   
 Valiant              18.1   6   225.0 105 2.76 3.460   
 Duster 360           14.3   8   360.0 245 3.21 3.570   
 Merc 240D            24.4   4   146.7  62 3.69 3.190   

 Using vectors also we can derive dataset in r environment,

    input<-mtcars[,c("mpg","disp","hp","wt","cyl")]

    print(input)

 following result show dataset of mtcars that contain those content which are passing to vectcor:

                      mpg     disp   hp     wt   cyl
 Mazda RX4            21.0    160.0  110  2.620   6
 Mazda RX4 Wag        21.0    160.0  110  2.875   6
 Datsun 710           22.8    108.0   93  2.320   4
 Hornet 4 Drive       21.4    258.0  110  3.215   6
 Hornet Sportabout    18.7    360.0  175  3.440   8
 Valiant              18.1    225.0  105  3.460   6
 Duster 360           14.3    360.0  245  3.570   8
 Merc 240D            24.4    146.7   62  3.190   4

  Then we find relation among those variable using lm() function   

   model<-lm(mpg~disp+hp+wt+cyl,data = input)

   print(model)

   than it will show following result,

  Call:

  lm(formula = mpg ~ disp + hp + wt + cyl, data = input)

  Coefficients:

  (Intercept)         disp           hp           wt          cyl 

     40.82854      0.01160     -0.02054     -3.85390     -1.29332

  Finally we find milege from disp,hp,wt and cyl using following formula,

   Y = a+disp*x1+hp*x2+wt*x3+cyl*x4

  or     

   z=40.82854+(0.01160)*160+(-0.02054)*110+(-3.85390)*2.620+(-1.29332)*6    

   print(z)

  output:

      22.568

 


About author

Card image cap
Manoj Pawar

I am data analyst and show you how visualization done using R language.!

-Data Analyst

0 Comments